Vorlesung 5b

Unabhängigkeit

Teil 5
Unabhängige Teilbeobachtungen
abhängiger Inputs

(vgl. Buch S. 68, Bsp. 1)

Sind X_1 und X_2 unabhängig,

dann auch $h_1(X_1)$ und $h_2(X_2)$.

Denn:

$$P(h_1(X_1) \in B_1, h_2(X_2) \in B_2)$$

$$= P(X_1 \in h_1^{-1}(B_1), X_2 \in h_2^{-1}(B_2))$$

$$= P(X_1 \in h_1^{-1}(B_1))P(X_2 \in h_2^{-1}(B_2))$$

$$= P(h_1(X_1) \in B_1)P(h_2(X_2) \in B_2). \square$$

Durch den Übergang zu "Teilbeobachtungen" $h_1(X_1)$ und $h_2(X_2)$ können aber auch aus abhängigen Zufallsvariablen X_1, X_2 voneinander unabhängige Zufallsvariable $h_1(X_1), h_2(X_2)$ entstehen:

Gewisse Teilaspekte von abhängigen Zufallsvariablen

können unabhängig sein:

Beispiel:

 (X_1, X_2) seien rein zufällige "Zwei aus $\{1, 2, \dots, 32\}$ ".

Offenbar sind X_1 und X_2 nicht unabhängig.

Aber: die Ereignisse

$$E_1 := \{X_1 \in \{1, 9, 17, 25\}\}, \quad E_2 := \{1 \le X_2 \le 8\}.$$
 sind unabhängig.

Denn

$$P(E_1) = \frac{1}{8}, P(E_2) = \frac{1}{4}, P(E_1 \cap E_2) = \frac{1 \cdot 7 + 3 \cdot 8}{32 \cdot 31} = \frac{1}{32}.$$

Als Anknüpfung an Teil 1 der heutigen Vorlesung geben wir hier auch die Tafel der 4 Wahrscheinlichkeiten

$$P(E_1 \cup E_2), P(E_1 \cup E_2^c), P(E_1^c \cup E_2), P(E_1^c \cup E_2^c)$$
:

	E_2	E^c_2
E_1	1·7+3·8 32·31	1·24+3·23 32·31
E_1^c	$\frac{7.7 + 21.8}{32.31}$	$\frac{7\cdot24+21\cdot23}{32\cdot31}$

Man sieht: Die Zeilen stehen im Verhältnis 1:7, die Spalten stehen im Verhältnis 1:3.

Das kommt daher, dass der relative Anteil von $A_1 := \{1, 9, 17, 25\}$ in $A_2 := \{1, 2, ..., 8\}$ ebenso groß ist wie der von A_1 in A_2^c .